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As in the isotropic case /I/ we can introduce three (?JZ $ l)-harmonic functions that with 

explicitly express all interconnected functions of (3.13) and (3.14). For this we introduce 
the (2n + 1, aj-harmonic function cF,, , the (2n -f- l.y)-harmonic function Y,,, and the (2n + 1, 
fi)-harmonic function x,, fox which 

The displacements can be expressed in terms of the functions introduced as follows: 

(3.15) 

The representations (3.13), (3.14), or (3.15) may be considered as an analog of the 
Kolosov-Muskhelishvili formulas for the three-dimensional stress state of a transversely iso- 
tropic medium. 

We note in conclusion that all of the formulas derived remain valid when the roots of 
Eq.(2.18) are complex. It is only necessary to introduce into consideration (rk, a)-analytic 
functions with complex constants a. 
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SPECTRAL RELATIONSHIPS FOR THE INTEGRAL OPERATORS GENERATED BY A KERNEL IN 
THE FORM OF A WEBER-SO~IN INTEG~L, AND 
THEIR APPLICATION TO CONTACT PROBLEMS* 

S.M. MKHITARIAN 

Generalized potential theory methods are used to re-establish the spectral 
relationship fl/ for the integral operators generated by a symmetric kernel 
in the form of the Weber-Sonin integral in the finite interval (0, 0) I the 
kernel containing Jacobi polynomials. Spectral relations are also 
established for the integral operator generated by the same kernel in the 
semi-infinite interval (a.~), and other allied relationships. The latter 
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are used to construct a closed solution of the axisymmetric contact problem of impressing a 
stamp of annular form in a plane, with an infinite outer radius, into a half-space, the deform- 
ation of which obeys a power law. The monographs /2, 3/ give a large number of variousspectral 
relationships in terms of orthogonal polynomials for the integral operators frequently encount- 
ered in mathematical physics, and describe a method of orthogonal polynomials based on them. 
They also show numerous applications of the method to the contact and mixed problems of the 
theory of elasticity. Spectral relations and their applications to the mixed problems are 
also given in /4, 5/. These papers are discussed in detail in /6/. 

1. Let us determine the eigenvalues and eigenfunctions of the integral operator 

W,= j W,v(r,p)cp(p)pdp,cp(r)EL,a(ol a)1 w(r) > 0 
Cl 

generated by a symmetric kernel inthe form of the Weber-Sonin integral 

m 

w,” (r, p) = 5 J, (rt) Jv (pt) m-1 dt, tie v > 0, y = p + + , IRepI <+ 
0 

where J,(P) is the Bessel function of first kind, of order v . To do this, we consider the 
following integral equation in a cylindrical system of coordinates (r, fi, I) : 

QR-“P (~9 (~)~dp.+=f(r, 6) Cl.11 

and the related generalized potent&l 

u (rr 6,~) = 1s (m + z*)-VP (P$ cp) P dp dv 

(Ra = r* f p1O- Prpcos (6 - cp), 0 = (2 = 0; r < a), 1 p 1 < I/*) 

(1.2) 

Putting 

we find that instead of (l.l), we can consider the integral equation 

! &,,v(rrp)pm(p)pdp=f,,,(r)~ m=O,L2*.. . 
II 

L,‘(r,p)= 5 G”’ cos mg dq Hoa = 9 + pa - 2rp cos cp 
--IT 

(1.3) 

and instead of (1.2), the generalized potential 

U,,,(r, z) =$(&I* + z2)+pm(p) COSWP~P+ 
0 

(1.4) 

NOW, using the results in /7-lo/we can show that the integral equation (1.3) is equivalent 
to the following boundary value problem for the outside of the circular disc o: 

(1.5) 

U,(r,2)Ir4=fm(r)1 O<r<a 

Urn (r, z) m (r* f za)-y P,, p,=O, m=i,?,... 

&=2&o(p,pdpv ra + z* + 00 
II 

Here the density of the sources of finite strength P,, i.e. the solution of (1.31, is given 

by 

r<a (1.6) 

We construct the solution of (1.5) using the method of separation of variables. To do this 

we introduce the following coordinates of the oblate spheroid /ll/: 
r=achusinv,z=ashucosu; O,<U<~O,~<V<~ (1.7) 
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u = 0 represents a doubly covered circular disc o of radius a. Toutilize 
in /ll/, we eliminate &J&z from (1.5) by putting 

U, (r, z) = iz PV, (r, 4 (1.8) 

This yields the differential equation 

which, on passing to the coordinates u, v and separating them 

w, @, 0) = uln (u) vnl (v) 

(W, (u, v) = V, (a ch a sin v, a sh 11 cos v)) 

leads /ll/ to the following ordinary differential equations: 

(1.9) 

(1.10) 

(1.11) 

It is clear that (1.10) transforms to (1.11) on putting u = i(v- n/2) . We shallthere- 
fore only consider (1.11). Further, using the analytic theory of differential equations /12/ 
we will show that (1.11) can be described by the following Riemann scheme: 

V,(u)=P 
( 

0 1 

PI2 m/2 (1 + T4A + I)/8 Cosa v 

(1 - p)/2 - m/2 (1 - f4h)/4 i 

Therefore (F(a, fi;r;x) is the Gauss hypergeometric function) 

V, (v) = 1 cos v 1s (sin vfm F (a, fi; 7; co@ 4 0 < UC X (1.12) 

cl = 
B 

2m t_ 2y _C 1/4hf4 

Since a+ @ - y = m>O, the hypergecnnetric series diverges when Y= 0 and y= A /13/. Rut 
by virtue of the boundedness of the initial potential Um(rt z) , this function must be bounded 
for oqv<n. The latter will be ensured provided (see /14/) that the hypergeometric series 
is truncated, and this will happen when a = -n (n = 0, 1, 2, . ..). This yields 

h = (m + 2n + y)a - I/4, n = 0, 1, 2, . . . 
Further, taking into account the relation given in ./15/ connecting the function F(a,b;c; 

2) with the Jacobi polynomials Pan@), we can finally write (1.12) in the form 

V, (v) = 1 cos v 1” (sin u)m Pc-l*m) (1 - 2 COSa V), 0 Q v < 51 (1.13) 

Now the unique solution of (1.10) bounded in the interval OQ U< O=J and vanishingas u + ~ti, 
will be given by the formula 

U, (u) = (sh u)" (ch u)~Q$-'*~) (1 + 2 ah" u), 0 g u < 00 (1.14) 

where Qp”‘(x) is the Jacobi function of the second kind /15/. We note that for the bounded- 
ness of V,(u) when II = 0 it is necessary that Og ~(~1~. However, in accordance with 

(1.7) and 11.8) we can assume that i p 1<‘/~. This comment also applies to v,,,(v) when v = x/2. 
The boundedness of the function u,(u) for 0 G u< 03 and its vanishing at infinity 

follow directly from its integral representation in terms of the Jacobi polynomials through 
the Cauchy-type integral /15/. Using (1.8) and (1.9) we find from (1.13) and (1.14) at once 
that the boundary value problem (1.5) has a unique normal solution of the form 

U, (r,z) = (ch usin v)"P, f"-lSm)(l - 2~os%fQ;""~)(I + 2sh*u) 

O~uc~,O,<u<n,n=0,1,2,... 

(1.15) 

where the variables I, z and u,v are connected by the formulas (1.7). Formula (1.6) yields 
the source density corresponding to the potential (1.15). Using the relations /15/ connecting 

Q~y'@' (r) P~'a' (2) with F(a, b; c;x) and carrying out certain transformations, we obtain 
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pm (r) = h&,P (1 - r%*)v-~P(Y-~~m) n (YrZ'a? - l), r< a 

V&n = CZ~(Y-~)-~~ (y)T (n + m + 1) IZnT (m + n + y)]+) 

(1.16) 

pm (4 
Next we substitute the value of the potential (1.15) at a = 0 and the expression for 

from (1.16) into (1.3), and take into account (1.4). This yields the spectral rela- 
tion a 

(1.17) 

P mn = nW1-y) r (m + n + y) r (72 + y) [sin n yr* (v) r (m + n + 1) n/l-1 

Further we express the kernel L,Y(r, p) from (1.3) in terms of the Weber-Sonin integral. To 
do this we use the well-known,formula /13/, p.92) to express it in terms of a hypergeometric 
function. After some reduction we find that 

L,y (T, p) = n2*(1-y) r (1 - y) Ir (~)I-~w,y (r, p), r, p > 0, m--0.1,... (1.18) 

Since the Weber-Sonin integral %Y(r, p) is an analytic functionof the parameters v and y in 
the domain of their variation, which ensures that the integral converges, it follows that 
relation (1.17) can be analytically continued, assuming formally that m =v, and Re v > U. 
I Re p I -=z I/*. Taking into account the latter and the formula (1.18), we finally obtain, after 
passing to dimensionless variables r = ax, p = ay, the following spectral relation: 

5 ri,y (5, y) P,Y (y) (1 - yap1 y”+l dy = &7YPnV (x) (1.19) 
0 

KJ (x, y) = a*VV~” (az, ay), P,,V (x) = P$3y-0 (1 - 2x7 

XL = 22(y--1) r (n + v + y)r (n + v) [r (n + v + 1) d-1, n = 0, 1, 2, . . . 

which was obtained by a different method in /l/ (relation (1.19) is identical with (2.17) of 
/l/ after an obvious elementary transformation). 

We can also obtain an expression related to (1.19) and valid for z> 1. Here we note 
that the surface v = n/2 represents, according to (1.7), a doubly covered plane annular disc 
r > a. Therefore we again substitute the value of the potential (1.15) at v = n/2 and the 
expression for pm(r) from (1.16) into (l-3), and take (1.4) into account. Repeating the 
arguments used in deriving (1.19) we arrive, after certain transformations, at the following 
relation: 

s KvY (I, y) P,v (y) (1 - y*)Y-1 yv+l dy = o$,,x”Q~-‘, ‘) (2x2- i), I> 1 
0 
61~y = (-i)n2*~-~ sin nyr (n + v + y) r (n + y) [nr (n + 

v + 1) ?a!]_‘, n = 0, 1, 3, . . . 

2. Let us now derive the spectral relations for the integral operator generated by a 
symmetric kernel in the form of a Weber-Sonin integral in the semi-infinite interval (a,,==~). 
In this connection we shall regard w everywhere in (l.l)-(1.4) as an annular disc r>a of 
the plane z = 0, and replace the interval (0, a) by (a, m). We again assume that the density 
of the sources giving rise to the generalized potential U(r,e,z) is finite, i.e. 

although this condition need not hold for separate harmonics. 
In the present case we again arrive at a boundary value problem of the type (1.5), and to 

construct its solution we again use (1.7) to introduce the coordinates of the oblate spheroid. 
In this case we must however assume that --m (a< 00, 0 < v< n/2. The surface v = n/2 re- 
presents a doubly covered annular disc o = {z - 0; r> a}. 

After the separation of variables we obtain, in these coordinates, the same differential 
equations (1.10) and (1.11) in which the separation h is replaced by -a* -l/d. But now the 
equation (1.10) will be considered in the interval -3o< U< m and (1.11) in the segment 

0 < v Q n/2. 
The differential equation (1.1) has the following two linearly independent solutions: 

(co9 u)fi (sin v)mF (a, 8; y; cos ' v) 

(co9 v)r-" (sin v)~F (a - y + 1, & - y + 1; 2 - y; cosz u) 

a = (m + y + ih)L?, ?, > 0, 0 -< u < n/2, Y = P + ‘I* 

Using the well-known formula /13/ we can write 



F(a, d; y; cos *v) = (sin u)-~~F (y - a, y -6; y; cos" v) (2.1) 

F(a---i-f, d-~+~;2-yy;~os~u)=(sinu)"~F(i-a, 1 - &; 2 - y; co.9 I+ 

from which it follows that the functions are of order (sin~)-"~ as U-PO, i.e. the hyper- 
geometric functions shown have, for the given values of the parameters, a singularity at the 
point v = 0. Using this, we write the solution of (1.11) in the form (0 Q v < n/2). 

V, (u) = (co.9 v)' (sin v)~ [cp,Y (h, sin u) - xmv (h) (Co5 IFe (2.2) 

x *my (%, sin $1 

mpnry (1, s) = F (a, d; y; 1 - x5), *my (h. 4 = F (a - y + 1, d - p + i; 2 - y; 1 - 9) 

and choose the unknown function X,q(h) in such a manner, that the function (Cesv)-Vm(U) is 

bounded on the segment O,( v,<zi2. Since y-a--&+m=O, using (2.1) and the formulas 
for analytic continuation of a hypergeometric function 1131, we find 

x,y (h) = I r I(m - y + 2 + 3421 I 2r ty) I r I (m + y + ih)/21 I -* [r (2 - y)l-’ (2.3) 

Thus the required solution of (1.11) is given in this case by the formulas (2.2)-(2.3). 
Let us now consider (1.10). We find at once that it has, in the case in question, two 

linearly independent solutions: 

U, (u) = j sh u $ (ch u)"cp,v(h, ch a), --DO < U< 00 

U, (u) = 1 sh u I 1-~ (ch u)~&V (h, ch u), m = 0, 1, 2, . . . 

(2.4) 

Here the functions ish u I-*cfm frc) are bounded for - 00 <~<a, and vanish exponentially in 
accordance with the asymptotic formulas /13/ as 1 u 1-f CV. Consequently, taking (2.2) and 
(2.4) into account we find that the boundary value problem (1.51 has, in this case, the normal 
solutions 

--<uu(oJ,O\(v~,<f2,m=0,1,2 ,... 

where the variables r, z and U,V are again connected by (1.7). 
Let us calculate the source intensities corresponding to the potentials (2.5). Noting 

that 

aum I L *=o= -(4sW)-1~f_,2, -m<u<w 

we use (1.6) to obtain from (2.5) (r = ach u,O,<~<~) 

pm (r) = n-1 (1 - 
1)1 (sh u)-1) (p,y (h, ch u) 

I’) ~zty-l~xmy @) (ch u) rtmT fh, ch u) (2.6) 

Next, taking into account (1.4) we substitute the expression for pm(r) given in (2.6) 
and the values of the corresponding potentials into (1.3) 

by (a, ~1. 
, where we replace the interval (0,s) 

As a result we arrive at the following spectral relations: 

!Y ~~Y(~,~)~~Y(~, p/u)(~/ua - I)y'lp"+lap= (2.7) 
a 

a,~(h)r"cp,v(h, r/a), r> a 

f ~,‘(r,p)1L,Y(X,p/~)p~+~ dp=s,v@)rm (+/Q'- t)l-y&,,V(ks r/Q) 

0 

am? (A,) = n [(1 --y)x,T (l.)l-'a~('~), m = 0, 1, 2, * . . 

In the special case when p = 0, using the relation given in C/13/, p.l30),wefind(P~-"(z) 
is the Legendre function of first kind) 

Qm'fS (h, 5) = 2%-'/* (is)-"' IF [ (m + 312 + i&):21 1 scpPm (h, z), z> 1 

mm" (h, 5) = -2m-1s-r'~ (ix)_" (r* - l)-'I* I r&n + 'i, + i?..) f 21 I%#, Q, x) 

(Fm (h, z) = 1P6-m (il/=?j + Pb-" (-i fX* - I)]& 6= --'I2 + ih. 

21, (A, r) = &-" (i$x' - 1) - Pa-" (-i 1/Z' - 1)]/(2i) 

(2.8) 
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Further, remembering what was said above about the analytical properties of the Weber- 
Sonin integral and changing to dimensionless coordinates by means of the formula r = az, p = 0~. 
we finally obtain in place of (2.7) the following spectral relation: 

~&'(2,y)(pvY(hly)(y*-l)1-~y"+~dy=p;,(h)I"IV~(h.~)~ r>-I (7.9) 

f K,v(~, y)$Vy(X, y) y”+l dy=p,y(h)x~(x~- I)'-vq,?(L .r) 
1 
p: (L) = 2*+1j 1 r [(v + y + ih)/211z 1 IY(v - y + 2 + ii.) /211 -’ 

where the expressions for (pQ'(h, z) and $J (A, S) are obtained from (2.2) and (2.8) by formal 
replacement of m by v. 

Relations (2.9) yield generalized eigenfunctions of the integral operator generated by 
the symmetric kernel, in the form of a Weber-Sonin integral in the semi-infinite interval(1, co). 

To obtain relations allied to (2.9) and valid for O<s<l, we put u = 0 in (2.5), use 
(1.4) and (2.6) and formally replace m by v . After certain transformations we obtain 

5 K,' (2, y) cp,” (A, y) (ya - iF1 Y’+’ dy = (2.10) 
1 

p.p(k)z~[(pyY(h,x)- %?@)(I -xy~w(~~41, 0 <s<i 

f K,‘(x, y) .~pvy (I., y) y”+’ dy = 0 
1 

where x$' (h) is obtained from (2.3) after replacing m by v , the remaining notation being un- 
changed. 

In the special case when p = 0; using (2.8), in which m has been replaced by v , rela- 
tions (2.9) and (2.10) become, respectively, 

K~TJ = f K’,/I (~9 Y) 'P(Y) (Y' - I)+ Y dy, o<x<= 
1 

“:q’,:;;; @>I) 

Xv=&(h,2)=Pi;V(1/1-_52)1 (O<z<l) 

The formulas for expanding arbitrary functions of a fairly general. class over the families 
of functions ~7 (h, 5) and $? (A, s)# can be obtained by the well known method described in 
/16/ by considering the hypergeometric differential equation in a semi-infinite interval. For 
the given values of the parameters we have, at the left end of this interval, the case of the 
Weyl limit circle. Other cases are discussed in /16, 17/. 

Without bothering to discuss the details of the proposed method, we give the final result: 
the formulas for expanding an arbitrary function f(z) over the family of functions CPVY (L r) 
have the following form: 

F (a) = s ‘pvy (a, I) (9 - l)v-1 x*v+‘f (5) dx 
1 

.n 

f (4 = i ‘P.JV (A, I) F (h) h (L) dh 

h (h) = [2n21'*(y)l-' Lshnh 1 I’[@ f y f iW]r [(v --V f ik_)T21 I* 

(2.11) 

and the formulas for the family of functions ti (A, z) are exactly similar. Using (2.8) for 

m==O we can show that (2.11) transposes into the well-known formulas given in /18/. Then, 
taking (2.11) into account, we can use the first spectral relation of (2.9) to obtain, for 
the kernel (zY)-"K,y (5, Y) r a bilinear expansion into an integral. 

3. We will illustrate the results obtained by considering the axisymmetric contact 
problem of impressing a stamp which has in the plane the form of a circular annulus with an 
infinite outer radius, into the half-space ~(0. We shall assume that the material of the 

half-space obeys a power law (it = K,ei’ (0< ~<i) of the non-linear theory of steady creep 
/19, 20/ where CJ~ and et are, respectively, the stress and strain rate intensities, while K, 
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and g are physical constants. Adhering to the generalized principle of superposition of dis- 
placements /19, 20/, we can reduce the solution of the problem in question to the solution of 
the integral equation 

T LoY (r, p) p. (p) p dp = A2(v-1) [6 - f0 (r)lz(l-y) (3.1) 

(1 

where pa(r) is the contact pressure, P, is the resultant of the external forces applied to 
the stamp, 6 is the settling of the stamp, fo(r) is a function describing its base, A is a 
constant expressed in terms of h', and Q, and the remaining notation is as before. 

Introducing the dimensionless variables 

r = ax, p = ay, p. (r) = A2(Y-Q(p (.z) 

f (z) = Zq’p-‘)r (y) [xl? (1 - ?)I-’ 16, - n-‘fo (as)12(‘-~), 6, = 6ia 

we can reduce (3.1) to 

and write the solution of (3.2) in the form 

cp(r)=o@)~ cpoY(L r)Q)(h)dh, o(z)=(z+- I)~-1, =>I 
0 

Substituting (3.3) into (3.2) and using (2.9), (3.11), we obtain 

P’“)h. sh (nh) 2 
@((h)= 

P(Y) [ch(&)- COJ xv] s 
CpoV(L Y)(Ya - ~FYf(Y)dY 

1 

(3.2) 

(3.3) 

(3.4) 

The reduced vertical displacements outside the stamp are given by the formula (O<z<i) 

where U, (r) are the true displacements of the foundation outside the stamp. Using (2.10) we 
find at once (O< I< 1) 

In the case of a linearly elastic half-space, when 0 = lit* formulas (3.3)-_(3.5), taking 
(2.8) into account, yield 

cp (5) = 8~18 (2" - I)+ f 'PO (h, z) h th (rch) x {ch (a@ 1 r [(6 + 1)/21 I’}-‘@ 6) dh 
0 

a~ (A) = n-1 5 ‘p. (h, 5) (P - lpzf (z) dz, 6 = - ‘12 + ih, z>l 

we(z)= (z;I)-‘j~,(~~)lr[(b+i)i2lI’~(~)dh. O<z<i 

Finally, to find 6, we equate the asymPtoticsof the left and right sides of (3.2) as z--, 00. 
Hence we obtain that the following asymptotic expression must hold: 

a-If0 (ax) a 6, - Q’zl-rC, z --f 00 

Q = P,,A~l-v)/a2, s = [2(1 - r)l-', c = l/p 

and this in fact yields 60. 
Note that the results of Sect.3 can be extended to the problem in question using the 

formulation of the linear theory of elasticity /6-9/ when the modulus of elasticity of the 
half-space has a power-low variation with depth. 
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TRANSONIC FLOW OF AN ELASTIC MEDIUM PAST A THIN SOLID* 

1-V. SIMONOV 

A plane problem of the steady state of a body in an infinite elastic medium 
in the range of sonic velocities is considered. The generalized Hilbert 
problem arises for the complex function determining the longitudinal part of 
the velocity and stress field , and the transverse part of the field is 
expressed simply by the solution of the Hilbert problem. The separation of 

the mediumfromthe body contour at the trailing edge is computed. In the 

former case the position of the separation point is not known, and the method 
of fixing this point differs from that in /l/ where the problem of wedging 
is considered at sub-Rayleigh velocities. In /l/ the free surface is formed 
before the frontal part of the wedge and the separation point is found from 
the condition that the stresses are finite. In the present problem, just as 
in the case of super-Rayleigh subsonic motion of a wedge /2, 3/, the condition 
that the stresses are finite (and even continuous) at the separation point 
is ensured by the solution beforehand, and a more accurate analysis is 

required, which will include, to clarify the problem, the computation of the 
first few terms of the asymptotic expansion of the solution near the separation 
point. The separation point is fixed using the condition of attachment of 
the flow in the zone of contact, and the condition of impermeability of the 
region between the separation point and the trailing edge of the body. The 

demand that both these physical conditions are met locally near the point Of 
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